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An analytical method for determining natural frequencies and mode shapes of the
torsional vibration of continuous beams with thin-walled cross-section is developed by using
a general solution of the di!erential equation of motion based on Vlasov's beam theory. This
method takes into account the e!ect of warping sti!ness; it leads to an exact solution and is
called the continuous mass method. Also, the approximate method based on the "nite
discrete element approach is presented. The mathematical relationship between the exact
and the approximate methods is discussed, and the accuracy of the natural frequencies
obtained by these analytical methods is investigated. Some typical continuous beams are
analyzed to illustrate the applicability of the lumped, consistent, and continuous mass
methods, and the computed results are given in tabular form.
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1. INTRODUCTION

The computation of natural frequencies and mode shapes is a signi"cant problem in the
dynamic analysis of structures, and it is of importance in the design of structures subjected
to vibratory loading caused by such agents as winds and moving vehicles. Torsional
vibration in a continuous beam may be produced by aerodynamic forces and unsymmetric
tra$c loads. It is generally considered that the structural response of continuous beams is
dependent on both lower and higher modes. In designing these kinds of continuous beams,
therefore, it is essential that the natural frequencies and mode shapes be determined
accurately.

From the computational point of view, the system of co-ordinates due to mass models is
divided into two basic types: the discrete co-ordinate system and the distributed co-ordinate
system, also referred to as the discrete mass model and the distributed mass model
respectively. The discrete co-ordinate system de"nes moments and angles of torsion at a set
of discrete points in terms of components having speci"ed directions. The analytical
procedure for this type can be greatly simpli"ed as an eigenvalue problem because the
inertia moments are developed only at these nodal points. In beam structures, the lumped
mass matrix [1, 2] is derived as a diagonal matrix by applying one-half of the total
rotational mass to each nodal point. Moreover, the mass in#uence coe$cients are
determined by using the cubic Hermitian polynomials as the shape functions. This result is
called the consistent mass matrix [3, 4] and it contains many o!-diagonal terms due to the
e!ects coupling. Krajcinovic [5] presented a consistent mass matrix by using hyperbolic
functions which are partial solutions of homogeneous di!erential equations governing the
static torsional problem.
0022-460X/01/220301#16 $35.00/0 ( 2001 Academic Press
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The second type of mass system to be distinguished is the distributed co-ordinate system
[6, 7]. The structural properties of mass and sti!ness are generally distributed continuously
throughout a beam. The ultimate idealized model is one which would re#ect the continuity
of these parameters. In this case, the dynamic sti!ness equation of a beam segment subjected
to torsional vibration is established by using a general solution of the di!erential equation
of motion. This distributed mass model leads to an eigenvalue problem of a transcendental
equation, and gives an exact solution. This approach is called the eigensti!ness matrix
method [8], or the continuous mass method [9]. In the last four years Banerjee et al. [10]
studied the dynamic sti!ness matrix of continuous beams with thin-walled cross-section.
But the in#uence coe$cients of the dynamic member sti!ness matrix have not been derived
in a closed form.

In the present study, a procedure for natural vibration analysis is elucidated using the
exact method [1] based on a general solution of a di!erential equation of motion. The
calculated results regarding natural frequencies are compared with the approximate
method based on the discrete co-ordinate system. The e!ect of the number of beam elements
and the accuracy of natural frequencies obtained by three di!erent mass matrix methods are
investigated. Lastly, several terms derived from a Taylor's series expansion of the
coe$cients in the new dynamic sti!ness matrix are shown, and the mathematical
relationship between the lumped, consistent and continuous mass methods is discussed. The
relative relationship between the exact and the approximate methods is demonstrated
clearly in the light of the above-mentioned numerical and mathematical considerations.

2. NATURAL VIBRATION ANALYSIS

2.1. DISTRIBUTED CO-ORDINATE SYSTEM

The beam considered in this study is assumed to be straight, having a thin-walled
constant cross-section. The axial co-ordinate x coincides with the beam axis through the
center of each cross-section. The angle of rotation about the beam axis is denoted by h. For
the sake of simplicity, a thin-walled beam of span length ¸ having a double-symmetrical
cross-section is considered, although other cross-sections can also be analyzed. The
mathematical formulation of the problem of free torsional vibration is presented [3, 11] by
a partial di!erential equation that is uncoupled if the center of the cross-section is
considered with the shear center. The problem is formulated by
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"0, (1)

where EI
w

is the torsional rigidity associated with warping, GJ is the Saint}Venant
torsional rigidity, m is the mass of the beam per unit length, r is the radius of gyration of the
cross-section, and t is the time. The solution of equation (1) can be obtained by assuming the
free vibration motion to be harmonic

h (x, t)"H(x) exp (iu t), (2)

where H(x) is the amplitude of torsional angle at point x for the vibrating beam

(eigenfunction), u is the natural circular frequency, and i"J!1. By substituting equation
(2) into equation (1), the eigenfunction H(x) for a thin-walled beam may be written in the
following form:
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in which
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and the integration constants C
1
, C

2
, C

3
and C

4
are determined by the boundary

conditions of the continuous beams.
The force quantities (torsional moment"M

x
(x) and warping moment"M

w
(x)) at any

point x of a beam are given by Vlasov [11]:
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where the superscript prime indicates di!erentiation with respect to the axial co-ordinate
x. To obtain the dynamic sti!ness matrix expressed by the distributed co-ordinate
system for the torsional vibration of the beam segment, the boundary conditions at
both ends of the beam (r: x"0 and s: x"¸ as shown in Figure 1) are imposed from
equation (3)
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In the above equations (6), h
x1

, h
x2

and h
w1

, h
w2

are, respectively, the torsional angle (the
angle of torsion) and the warping torsional angle (the angle of torsion per unit length) at the
ends of the beam, while M

x1
, M

x2
and M

w1
, M

w2
correspond to the torsional and warping

moments at these nodal co-ordinates. The end moments and displacements of a beam
segment are indicated in Figure 1. By means of the eigenfunction in equation (3), the state
vector Mh

x1
, h
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, M
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w1
NT of the beam at the point x"0 is related to the integration

constant vector MC
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4
NT, and the end displacements (h

x2
, h

w2
) and end moments

(M
x2

, M
w2

) of the beam at the point x"¸ may be expressed in terms of the same
integration constant vector. By eliminating the integration constant vector from the above
two equations, the "nal form of the dynamic sti!ness matrix relating end harmonic
Figure 1. Sign of dynamic sti!ness matrix: (a) end torsional moments; (b) end torsional angles.
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moments and displacements is obtained by the following matrix notation:
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or, in abbreviated form

F"K(u)U, (7b)

where F is the end force vector, and U is the end displacement vector. As for the coe$cients
of the dynamic sti!ness matrix K(u):
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in the above, the letters c, s, C and S denote

c"cos k¸, s"sink¸, C"cosh l¸, S"sinh l¸. (9a}d)

The square matrix K(u) obtained in equation (7b) is designated in this study as the
eigensti!ness matrix [8] because this matrix K(u) includes the eigenvalues k¸ and l¸ of the
beam. The eigensti!ness matrix can be used to assemble the system dynamic sti!ness matrix
for a continuous beam or a space frame in a manner entirely analogous to the assemblage of
the system static sti!ness matrix from element sti!ness matrices. Therefore, the frequency
equation of continuous beams or frames for the distributed co-ordinate system can be
expressed by means of the principle of superposition

det DK (u)D"0. (10)

This is a transcendental equation of trigonometric and hyperbolic functions which contains
the natural circular frequencies u of the beam. The roots of equation (10) may be obtained
by applying the Regula}Falsi method [12] and by using a high-speed digital computer.

Corresponding to a particular value of natural frequency u
n
, an eigenfunction is de"ned

by equation (3) which is also called the modal shape function. This eigenfunction represents
the mode shape of the torsionally vibrating beam at each of the eigenvalues. The
eigenfunction for continuous beams, as shown in Figure 2, is given in the following equation
from equation (3):
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where H
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) is the eigenfunction of the ith span for the nth modes, and C
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Figure 2. N-span continuous beam.
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beams is assumed to be at the left-hand end of each span. By means of the "rst four
expressions in equation (6), the integration constants may be expressed in terms of the
displacements at both ends of the beam segment
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r
11
"R (cC!1!lsS/k ), r

12
"R(cS/l!sC/k), r

13
"R(C!c),

r
14
"R (s/k!S/l), r

21
"R (sC#lcS/k), r

22
"RMsS/l!(1!cC )/kN,

r
23
"!R(s#lS/k), r

24
"!r

13
/k,

r
31
"!kr

22
, r

32
"!r

12
, r

33
"!r

13
, r

34
"!r

14
,

r
41
"!kr

21
/l, r

42
"!r

11
/l, r

43
"!kr

23
/l, r

44
"r

13
/l,

R"

kl
2kl (1!cC)#(l2!k2)sS

. (13a}q)

The square matrix R of order 4]4 in equation (12b) is called in this study the integration
constant matrix. The sign used in equation (12) is for a typical beam, as shown in Figure 1,
in which both end displacements (h

x1
, h

w1
, h

x2
, h

w2
) shown are positive. The values of the

integration constants C
1ni

, C
2ni

, C
3ni

and C
4ni

are determined by substituting both end
displacements of individual element beam members into equation (12).

2.2. DISCRETE CO-ORDINATE SYSTEM

In the discrete co-ordinate system, the dynamic sti!ness matrix for the torsional action of
thin-walled beams is expressed as a superposition of elastic and inertial forces forming,
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respectively, the sti!ness and mass matrices. These matrices are obtained from formulations
based on the cubic displacement function that is standard in "nite element beam theory
[2, 13, 14]. The results are simpler in form than equations (7) and (8) but are less accurate,
because the assumed cubic "eld is only approximate. This is discussed in a later numerical
example and power series expansion of the dynamic sti!ness matrix developed in this study.
The static sti!ness matrix K

s
for a thin-walled beam with a constant and open cross-section

is given by [3, 15]
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By assuming the same displacement functions which are used for formulation of the static
sti!ness matrix K

s
, the consistent mass matrix [3, 4] corresponding to the torsional e!ects is

M
c
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and by applying one-half of the total rotational mass to both nodal points of the beam
segment, the lumped torsional mass matrix is obtained [1, 2] as

M
l
"mr2¸/24 ) MDiag (12 ¸2 12 ¸2 )N, (16)

where Diag( ) is the diagonal matrix. This mass matrix M
l
is the simplest method for

considering the inertial properties of a dynamic system.
The static sti!ness and mass matrices for each beam element are assembled into system

sti!ness matrix K and system mass matrix M for the entire beam. To avoid singularities in
an eigenvalue solution, the boundary conditions for the beam are considered by fully
elimination of all "xed degree of freedom (dof.) The frequency equation of the discrete
co-ordinate system (lumped and consistent mass methods) may be given as follows:

det DK!u2M D"0. (17)

Equation (17) is an important mathematical problem known as an eigenvalue problem.
There are several computing methods that are widely used for solving the eigenvalue
problem of vibration systems. The system sti!ness and mass matrices in equation (17) are
the symmetric matrix. The Householder method for determining the eigenvalues and
eigenvectors of a symmetric matrix is used in this study. A sequence of Householder
transformations that reduce the symmetric matrix to a simpler tri-diagonal form is more
e$cient for analysis of large-sized eigenvalue problems [16, 17]. The computation of the
eigenvalues in the present analysis is carried out through a Householder-Bisection-Inverse
Iteration Solution subroutine (DEIGAB and DEIGRS), a double-precision version of
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which is available from the mathematical subprogram package IMSL at the Hokkaido
University Computing Center.

3. NUMERICAL RESULTS

A numerical example is presented to demonstrate the applicability of the analytical
method developed here and to delineate some characteristics of torsional vibration of
continuous beams. Figure 3 shows a single-span beam and two- and three-span continuous
beams with a thin-walled uniform cross-section. The geometry of the beams and the
structural properties necessary for natural vibration analysis are given as follows: span
length, ¸"31)5 m, warping sti!ness, EI

w
"1)336]1010Nm4, torsional sti!ness,

GJ"2)789]1010Nm2, polar moment of inertia, I
p
"1)1023m4, cross-sectional area,

A"0)2033m2, and dead load of the beam per unit length, w"1)566]104N/m. All data on
the geometry and structural properties of beams are the same, and the beams are subdivided
into N beam segments of equal length. The boundary conditions of a single-span beam and
continuous beams are restrained against the angle of torsion about the beam axis with no
restraint of warping.

The calculated results of the single-span beam and two- and three-span continuous
beams by the lumped and consistent mass methods are presented for the "rst 10 modes in
Tables 1, 2 and 3, respectively, and are compared with the exact solutions obtained by the
continuous mass method. Also, the percentage di!erences between the exact solutions due
to the continuous mass method and the approximate natural frequencies due to the lumped
and consistent mass methods are given in parentheses in these tables. By means of both the
lumped and consistent mass methods, the values of approximate natural frequencies
gradually approach the exact solutions as the number N of beam segments increases. In
general, the torsional natural frequencies obtained by the use of the lumped and consistent
mass methods are the lower and upper bounds to the exact solutions respectively. It may be
also pointed out that for the same number of beam segments, the use of the consistent mass
method provides a higher level of accuracy than that of the lumped mass method.

It is seen in Tables 1}3 that there is an interesting pattern in which the natural frequencies
calculated by the lumped and consistent mass methods fall into some groups, with as many
modes in each group as the number of spans in the continuous beam. The grouping of the
natural frequencies and the percentage di!erences from the exact solution are repeated at
constant intervals according to the number of spans. The "rst, second, third and fourth
Figure 3. Numerical examples: (a) single-span beam; (b) two-span continuous beam; (c) three-span continuous
beam.



TABLE 1

¹orsional natural frequencies (Hz) of single-span beam

Lumped mass method Consistent mass method
Mode Continuous
order N"6 N"8 N"10 N"12 N"6 N"8 N"10 N"12 mass method

1 28)273 28)415 28)481 28)517 28)598 28)598 28)598 28)598 28)598
!(1)136) !(0)640) !(0)410) !(0)285) (0)000) (0)000) (0)000) (0)000)

2 55)030 56)143 56)665 56)950 57)605 57)603 57)603 57)603 57)603
!(4)466) !(2)534) !(1)629) !(1)134) (0)003) (0)001) (0)000) (0)000)

3 78)870 82)516 84)246 85)200 87)438 87)419 87)414 87)412 87)411
!(9)771) !(5)600) !(3)621) !(2)529) (0)031) (0)009) (0)003) (0)001)

4 98)596 106)899 110)910 113)145 118)573 118)453 118)422 118)411 118)402
!(16)728) !(9)715) !(6)327) !(4)440) (0)144) (0)043) (0)016) (0)007)

5 113)140 128)713 136)330 140)626 151)613 151)147 151)016 150)970 150)930
!(25)038) !(14)720) !(9)673) !(6)827) (0)453) (0)144) (0)057) (0)026)

6 147)423 160)173 167)454 186)011 185)603 185)453 185)319
!(20)449) !(13)569) !(9)640) (0)373) (0)153) (0)073)

7 162)359 182)107 193)411 223)651 222)625 222)230 221)860
!(26)819) !(17)918) !(12)823) (0)807) (0)345) (0)167)

8 201)777 218)258 262)581 261)688 260)813
!(22)635) !(16)316) (0)678) (0)335)

9 218)589 241)735 305)992 304)245 302)403
!(27)716) !(20)062) (1)187) (0)609)

10 263)535 350)351 346)825
!(24)015) (1)017)
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TABLE 2

¹orsional natural frequencies (Hz) of two-span continuous beam

Lumped mass method Consistent mass method
Mode Continuous
order N"12 N"16 N"20 N"24 N"12 N"16 N"20 N"24 mass method

1 28)273 28)415 28)481 28)517 28)598 28)598 28)598 28)598 28)598
!(1)136) !(0)640) !(0)410) !(0)285) (0)000) (0)000) (0)000) (0)000)

2 29)084 29)150 29)178 29)193 29)436 29)346 29)303 29)279 29)242
!(0)539) !(0)313) !(0)218) !(0)166) (0)665) (0)356) (0)208) (0)128)

3 55)030 56)143 56)665 56)950 57)605 57)603 57)603 57)603 57)603
!(4)466) !(2)534) !(1)629) !(1)134) (0)003) (0)001) (0)000) (0)000)

4 56)500 57)550 58)028 58)287 59)296 59)111 59)024 58)977 58)902
!(4)078) !(2)295) !(1)484) !(1)044) (0)669) (0)355) (0)207) (0)128)

5 78)870 82)516 84)246 85)200 87)438 87)419 87)414 87)412 87)411
!(9)771) !(5)600) !(3)621) !(2)529) (0)031) (0)009) (0)003) (0)001)

6 80)716 84)474 86)215 87)167 90)045 89)718 89)576 89)503 89)387
!(9)701) !(5)497) !(3)549) !(2)484) (0)736) (0)370) (0)211) (0)130)

7 98)596 106)899 110)910 113)145 118)573 118)453 118)422 118)411 118)402
!(16)728) !(9)715) !(6)327) !(4)440) (0)144) (0)043) (0)016) (0)007)

8 100)446 109)247 113)400 115)693 122)242 121)610 121)368 121)253 121)085
!(17)045) !(9)777) !(6)347) !(4)453) (0)956) (0)434) (0)234) (0)139)

9 113)140 128)713 136)330 140)626 151)613 151)147 151)016 150)970 150)930
!(25)038) !(14)720) !(9)673) !(6)827) (0)453) (0)144) (0)057) (0)026)

10 114)565 131)273 139)236 143)696 156)546 155)272 154)811 154)612 154)354
!(25)778) !(14)954) !(9)794) !(6)905) (1)420) (0)594) (0)296) (0)167)
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TABLE 3

¹orsional natural frequencies (Hz) of three-span continuous beam

Lumped mass method Consistent mass method
Mode Continuous
order N"18 N"24 N"30 N"36 N"18 N"24 N"30 N"36 mass method

1 28)273 28)415 28)481 28)517 28)598 28)598 28)598 28)598 28)598
!(1)136) !(0)640) !(0)410) !(0)285) (0)000) (0)000) (0)000) (0)000)

2 28)674 28)778 28)826 28)851 29)012 28)968 28)946 28)935 28)917
!(0)841) !(0)478) !(0)315) !(0)226) (0)328) (0)176) (0)103) (0)064)

3 29)507 29)532 29)539 29)544 29)873 29)735 29)668 29)632 29)575
!(0)229) !(0)144) !(0)119) !(0)105) (1)010) (0)541) (0)315) (0)194)

4 55)030 56)143 56)665 56)950 57)605 57)603 57)603 57)603 57)603
!(4)466) !(2)534) !(1)629) !(1)134) (0)003) (0)001) (0)000) (0)000)

5 55)759 56)841 57)340 57)612 58)442 58)350 58)307 58)284 58)247
!(4)271) !(2)414) !(1)556) !(1)089) (0)334) (0)177) (0)103) (0)064)

6 57)259 58)277 58)732 58)977 60)175 59)892 59)758 59)687 59)572
!(3)882) !(2)174) !(1)410) !(0)998) (1)013) (0)537) (0)313) (0)193)

7 78)870 82)516 84)246 85)200 87)438 87)419 87)414 87)412 87)411
!(9)771) !(5)600) !(3)621) !(2)529) (0)031) (0)009) (0)003) (0.001)

8 79)793 83)491 85)226 86)179 88)734 88)562 88)489 88)452 88)394
!(9)730) !(5)546) !(3)583) !(2)506) (0)385) (0)190) (0)108) (0)066)

9 81)654 85)477 87)226 88)176 91)396 90)904 90)689 90)578 90)402
!(9)676) !(5)448) !(3)513) !(2)462) (1)099) (0)555) (0)317) (0)195)

10 98)596 106)899 110)910 113)145 118)573 118)453 118)422 118)411 118)402
!(16)728) !(9)715) !(6)327) !(4)440) (0)144) (0)043) (0)016) (0)007)
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Figure 4. Natural frequency ratio f / f * of three-span continuous beam.
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modes of the single-span beam correspond to the "rst, third, "fth and seventh modes of the
two-span continuous beam, and to the "rst, fourth, seventh and 10th modes of the
three-span continuous beam respectively.

Figure 4 indicates the relationship between the natural frequency ratio f / f * and the order
of natural modes for the three-span continuous beam. Here, f * is the exact solution
obtained by the continuous mass method, and f is the approximate solution obtained by
using the lumped and consistent mass methods. The values of natural frequencies calculated
by using the lumped mass method are considerably small in comparison with those of the
exact solutions, as the mode order is higher. On the other hand, the values of natural
frequencies obtained by the consistent mass method are a little large in comparison with the
exact solutions. The torsional natural frequencies of continuous beams obtained by the
consistent mass method can be computed more accurately than those of the lumped mass
method, for the same required order of natural modes. It may be con"rmed from
Figure 4 that there is a mode grouping in torsional natural frequencies of three-span
continuous beams calculated by the lumped mass method.

4. POWER SERIES EXPANSION

The mathematical relationship between the lumped, consistent and continuous mass
methods is established in this study. It is shown that the terms of the power series expansion
of the coe$cients in the eigensti!ness matrix of equation (8) are precisely the sti!ness and
mass matrices in common use in the "nite element method (displacement method). For



312 Y. MATSUI AND T. HAYASHIKAWA
simplicity, the dynamic coe$cient k
11

of equation (8a) is expanded in a series. It can be
derived from a Taylor's series expansion as follows:

k
11
"

EI
w
kl (k2#l2) (l cos k¸ sinh l¸#k sink¸ cosh l¸)

2kl(1!cosk¸ cosh l¸)#(l2!k2) sink¸ sinh l¸

"

12EI
w

¸3
#

6GJ

5¸
!

13

35
mr2¸u2!

GJ¸

700 A
GJ

EI
w
B#

mr2¸3

3150 A
GJ

EI
w
Bu2#

GJ¸3

63 000A
GJ

EI
w
B
2
#2.

(18)

It should be recognized that the "rst two terms on the right-hand side of equation (18) are
equal to the corresponding sti!ness coe$cient of the matrix in equation (14), and the third
term is equal to the consistent mass coe$cient of the matrix in equation (15). Similarly, the
Taylor's series expansions of the dynamic sti!ness coe$cients of matrix for torsional
vibration may be written in matrix notation as

K(u)"K
0
)EI

w
#G

0
)GJ!M

0
)u2!G

1
) (GJ)2#M

1
)GJu2#G

2
) (GJ)3#2, (19)

where the coe$cients of the "rst six matrices in the above equation (19) are given in
Appendix A.

The "rst two matrices (K
0
)EI

w
#G

0
)GJ) agree precisely with the static sti!ness matrix

K
s
shown in equation (14), and the third matrix M

0
is also equal to the consistent mass

matrix M
c
in equation (15). The other matrices G

1
, M

1
and G

2
in equation (19) correspond

to higher order terms obtained by expanding the dynamic sti!ness matrix in Taylor's series
expansions. It is seen that the values of these coe$cients of matrices G

1
, M

1
and G

2
are

considerably small in comparison with those of matrices K
0
, G

0
and M

0
. Therefore, it is

concluded that the consistent mass method applies in a special case of the continuous mass
method obtained by neglecting higher order terms. Moreover, it can be estimated that the
lumped mass method is a truncated result of the consistent mass method which is obtained
by omitting the mass coupling. The relative relationship between the exact and approximate
mass methods is demonstrated clearly from the aforementioned mathematical
consideration, and it is also easily comprehensible from the computed results shown in
Tables 1}3.

5. CONCLUSIONS

An analytical method based on the general solution of a di!erential equation of motion
for torsional vibration of beams with thin-walled cross-sections is developed in this study.
The coe$cients of the dynamic sti!ness matrix are given a closed form, and can be used in
assembling the dynamic sti!ness matrix for the entire structure by using the same procedure
employed in assembling the sti!ness and mass matrices for the discrete co-ordinate system.
The mathematical relationship between the exact method and the approximate method
based on a "nite element approach is established. The static sti!ness matrix and consistent
mass matrix in equations (14) and (15) are represented by the "rst three terms of
a power-series expansion of the coe$cients of the dynamic sti!ness matrix of equation (7).
Consequently, it is concluded that the consistent mass method is a special procedure of the
continuous mass method which disregards the e!ects of higher order terms. Moreover, the
lumped mass method is a truncated result of the consistent mass method which is obtained
by omitting the mass coupling in order to simplify the problem.
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It is seen from Tables 1}3 that the values of natural frequencies obtained by the consistent
mass method are the upper bounds to the exact solution. The conventional lumped mass
method yields natural frequencies that are considerably lower than the exact solution for
the same number of beam segments. In general, the torsional natural frequencies of
continuous beams can be calculated more accurately by the consistent mass method than
by the lumped mass method. The torsional natural frequencies of continuous beams with
a uniform span length have an interesting group of modes corresponding to the number of
spans. It is also con"rmed that an aberration to the exact solution is repeated in the
constant according to the number of spans. This study provides a basis for future theoretical
research and may be applied to structural dynamics concerning the triple coupling
vibration of thin-walled straight continuous beams and horizontally curved beams with
inclusion of the e!ects of warping torsion.
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APPENDIX A: MATRICES OF EQUATION (19)

The coe$cients of matrices K
0
, G

0
, M

0
, G

1
, M

1
and G

2
in equation (19) are represented

as follows. The "rst matrix (sti!ness matrix) K
0

is

K
0
"

12

¸3

6

¸2
!

12

¸3

6

¸2

4

¸

!

6

¸2

2

¸

12

¸3
!

6

¸2

Sym.
4

¸

. (A1)

The second matrix (geometrical matrix) G
0

is

G
0
"

6

5¸

1

10
!

6

5¸

1

10
2¸

15
!

1
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¸
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The third matrix (mass matrix) M
0

is

M
0
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11¸
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!
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13¸
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. (A3)

The fourth matrix ( second order geometrical matrix) G
1

is

G
1
"

¸

EI
w

1
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¸
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!

1

700

¸
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The "fth matrix (second order mass-geometrical matrix) M
1

is

M
1
"

mr2¸3

EI
w

1

3150

¸

1260
!

1

3150
!

¸

1680
¸2

3150

¸
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¸2

3150

. (A5)

Finally, the sixth matrix (third order geometrical matrix) G
2

is

G
2
"

¸3

100(EI
w
)2

1

630

¸

1260
!

1

630

¸

1260
¸2

270
!

¸

1260
!

¸2
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¸
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APPENDIX B: NOMENCLATURE

A cross-sectional area
C

1
, C

2
, C

3
, C

4
integration constants

C integration constant vector
EI

w
warping rigidity

f , f * natural frequencies
F end force vector
GJ torsional rigidity
G

0
, G

1
, G

2
coe$cient matrices

I
p

polar moment of inertia
k
ij

coe$cients of dynamic sti!ness matrix
K coe$cient
K, K

0
, K

s
sti!ness matrices

K(u) dynamic sti!ness matrix
¸ span length
M

x
, M

w
torsional and warping moments respectively

m mass of beam per unit length
M

c
, M

l
consistent and lumped mass matrices respectively

M
0
, M

1
mass matrices

N number of beam segments
r radius of gyration of the cross-section
r
ij

coe$cients of integration constant matrix
R coe$cient
R integration constant matrix
t time co-ordinate
U displacement vector
w dead load of beam per unit length
x co-ordinate
h, h

x
torsional angles

h
w

angle of torsion per unit length
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H(x) eigenfunction
k, l, f frequency parameters
u natural circular frequency
Diag( ) diagonal matrix
det D D determinant of matrix
M NT transposition matrix
( @ ), (A), ( @@@) derivatives with respect to co-ordinate x
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